Co-generation of hydrogen and power/current pulses from supercapacitive MFCs using novel HER iron-based catalysts

نویسندگان

  • Carlo Santoro
  • Francesca Soavi
  • Catia Arbizzani
  • Alexey Serov
  • Sadia Kabir
  • Kayla Carpenter
  • Orianna Bretschger
  • Plamen Atanassov
چکیده

In this work, four different supercapacitive microbial fuel cells (SC-MFCs) with carbon brush as the anode and an air-breathing cathode with Fe-Aminoantipyrine (Fe-AAPyr) as the catalyst have been investigated using galvanostatic discharges. The maximum power (Pmax) obtained was in the range from 1.7 mW to 1.9 mW for each SC-MFC. This in-series connection of four SC-MFCs almost quadrupled Pmax to an operating voltage of 3025 mV and a Pmax of 8.1 mW, one of the highest power outputs reported in the literature. An additional electrode (AdHER) connected to the anode of the first SC-MFC and placed in the fourth SC-MFC evolved hydrogen. The hydrogen evolution reaction (HER) taking place at the electrode was studied on Pt and two novel platinum group metal-free (PGM-free) catalysts: Fe-Aminoantipyrine (Fe-AAPyr) and Fe-Mebendazole (Fe-MBZ). The amount of H2 produced was estimated using the Faraday law as 0.86 mMd-1cm-2 (0.132 L day-1) for Pt, 0.83 mMd-1cm-2 (0.127 L day-1) for Fe-AAPyr and 0.8 mMd-1cm-2 (0.123 L day-1) for Fe-MBZ. Hydrogen evolution was also detected using gas chromatography. While HER was taking place, galvanostatic discharges were also performed showing simultaneous H2 production and pulsed power generation with no need of external power sources.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional graphene nanosheets as cathode catalysts in standard and supercapacitive microbial fuel cell

Three-dimensional graphene nanosheets (3D-GNS) were used as cathode catalysts for microbial fuel cells (MFCs) operating in neutral conditions. 3D-GNS catalysts showed high performance towards oxygen electroreduction in neutral media with high current densities and low hydrogen peroxide generation compared to activated carbon (AC). 3D-GNS was incorporated into air-breathing cathodes based on AC ...

متن کامل

Preparation of Ni-P-CeO2 electrode and study on electrocatalytic properties for hydrogen evolution reaction

In this study ternary Ni-P-CeO2 catalysts were first synthesized by the Co-electrodeposition method on a copper substrate and then characterized by means of microstructural and electrochemical techniques toward a hydrogen evolution reaction (HER). Also, for comparison other catalysts such as Ni-CeO2, Ni-P, and Ni were prepared and characterized by the same methods. The microstructure of the inv...

متن کامل

Carbon-Based Air-Breathing Cathodes for Microbial Fuel Cells

A comparison between different carbon-based gas-diffusion air-breathing cathodes for microbial fuel cells (MFCs) is presented in this work. A micro-porous layer (MPL) based on carbon black (CB) and an activated carbon (AC) layer were used as catalysts and applied on different supporting materials, including carbon cloth (CC), carbon felt (CF), and stainless steel (SS) forming cathode electrodes...

متن کامل

Isolation and Analysis of Novel Electrochemically Active Bacteria for Enhanced Power Generation in Microbial Fuel Cells

PROJECT SUMMARY Bacteria capable of exocellular transfer of electrons to solid surfaces, called exoelectrogens, make it possible to obtain electricity from the breakdown of organic matter in microbial fuel cells (MFCs). We obtained several new exoelectrogenic bacteria during this project. We isolated Rhodopseudomonas palustris DX-1, and demonstrated for the first time that a pure culture could ...

متن کامل

Preparation of a Novel Super Active Fischer-Tropsch Cobalt Catalyst Supported on Carbon Nanotubes

The potential of carbon nanotubes (CNT) supported cobalt catalysts for Fischer-Tropsch (FT) reaction is shown. Using the wet impregnation method cobalt on carbon nanotubes catalysts were prepared with cobalt loading varying from 15 to 45 wt. %. The catalysts are characterized by different methods including: BET physisorption, X-ray diffraction, hydrogen chemisorption, and temperature-progra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 220  شماره 

صفحات  -

تاریخ انتشار 2016